From Our Archives: Letter from Lewis Larsen “LENRs are Better Than Fusion”
(Reprinted from Oct. 7, 2008)
By Lewis G. Larsen
In our recent preprint, “A Primer for Electro-Weak Induced Low Energy Nuclear Reactions,” we summarized our theoretical work at a less mathematically detailed and more conceptually oriented level. Sometimes, important physics concepts can be obscured by the formalism of complex mathematics that is required to describe rigorously the physical phenomena. This new paper provides a basic conceptual overview of our theory of Low-Energy Nuclear Reactions for a broader range of readers. We hope to entice some of them to take the time necessary to delve into the mathematical details of the collective electroweak physics that are contained in our six underlying papers.
As we have stated many times before, none of our theoretical work on LENRs includes new microscopic physics. What is new about our work is that, for the first time, we extend many-body collective effects to existing electroweak theory within the overall framework of the Standard Model. In seven technical publications, we have developed a foundational theory of LENRs that weaves together all the previously disparate threads of varied experimental evidence into a coherent whole. We have done that using rigorous, established, well-accepted physics.
The Widom-Larsen theory of LENRs provides a foundational understanding of a certain body of anomalous experimental data that has been inexplicable for a hundred years.
We like to think of weak-interaction LENRs as extending the legacy of Enrico Fermi’s seminal mid-1930s work on beta decay, as well as making good on the failed promise of strong interaction nuclear fission—that is, providing a clean, safe, inexpensive source of nuclear energy. In the aftermath of World War II, Fermi’s beloved weak interactions were somewhat neglected by science. They became lost in the turmoil about nuclear weapons and the horrors of nuclear war.
In contrast to the “hot” research areas of fission and fusion, weak interactions became a scientific curiosity: holding theoretical interest with no apparent practical applications. After all, every physicist and chemist simply “knows” that radioactive beta decay rates are mainly low-energy reactions and, being random, cannot be controlled. Such weak interaction processes were universally regarded as useless for power generation applications. In addition, no one had seriously considered the possibility of creating neutrons directly from protons or deuterons through the weak interaction. Researchers just didn’t see any reasonable way to get weak interaction rates high enough to be useful. Well, our theory of LENRs and hundreds of credible experiments now suggest otherwise.
According to our theory, LENRs do not involve any kind of Coulomb barrier-penetrating fusion, deuterium-deuterium or otherwise. In our opinion, they never did. We will not mince words on this: The “cold fusion” community was dead wrong on that theoretical point. However, “cold fusion” experimentalists were dead right about many of their experimental observations. They were correct about LENRs potentially being an important nuclear process that eventually might be harnessed to provide a new type of primary energy source: clean, truly “green” nuclear power.
Scattered around the world, these mostly unsung researchers labored experimentally for 19 years (most of them with little funding), exploring the many complex avenues and treacherous backwaters of the vast LENR parameter space. During that time, they kept the flame alive by doggedly collecting experimental data until a large enough body of knowledge had accumulated for someone to be able to develop a comprehensive theory of the phenomena. The accumulation of all that varied experimental data on LENRs, while little-published in peer-reviewed journals, was crucial to the development of our theory.
The “cold fusion” community can be proud of many of its reported experimental results. When people work on the cutting edge of science, sometimes knowing what doesn’t work experimentally is just as important as understanding what does work; failures can be every bit as instructive as successes. Most of all, good experimental data are crucial for the development of any successful theory; theory and experiment are inextricably and indissolubly linked.
A revolutionary scientific paradigm shift has been brewing slowly over the past 19 years. The world of mainstream science is finally waking up to the possibility that previously neglected weak interactions might provide another new source of nuclear energy. In fact, given their unique characteristics, weak-interaction LENRs could prove to be a vastly cleaner, “greener,” less expensive power generation technology than strong-interaction fission or fusion. In our 2006 European Physical Journal C paper, we showed an example of a LENR-based lithium reaction that generated roughly as much energy as fusion reactions, but without the release of any dangerous energetic neutrons or “hard” gamma radiation. LENRs are better than fusion. That is revolutionary. LENRs gore many long-standing sacred cows and threaten myriad vested scientific and commercial interests.
The “cold fusion” community was not uniquely persecuted by mainstream science. That community was the first major wave of shock troops in the forefront of a scientific revolution involving the weak interaction. As in many military engagements in real-world revolutions, the first troops to hit the beach usually take the biggest casualties because they have the least information about the battlefield and are the easiest targets. This has happened time after time in the history of science, especially in the case of major paradigm shifts. Thomas Kuhn chronicled this in his famous book The Structure of Scientific Revolutions. Revolutions, scientific or otherwise, are rarely bloodless. LENRs are no exception to that rule.
We believe that our collective many-body theory finally has put LENRs on a firm theoretical footing by carefully anchoring them in the solid bedrock of electroweak theory and the Standard Model. The field now needs to attract many more entrants from mainstream science for LENRs to flower fully and reach their scientific and commercial potential.
Lewis Larsen
President and CEO
Lattice Energy LLC
Lewis G. Larsen, 72, died on October 25, 2019